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Abstract. Multiplication of two elements of the special unitary groupSU(N) determines
uniquely a third group element. A Baker–Campbell–Hausdorff relation is derived which
expresses the group parameters of the product (written as an exponential) in terms of the
parameters of the exponential factors. This requires the eigenvalues of three(N ×N) matrices.
Consequently, the relation can be stated analytically up toN = 4, in principle. Similarity
transformations encoding the time evolution of quantum-mechanical observables, for example,
can be obtained by the same means.

1. Introduction

Various questions in physics reduce to the following problem: write the product of
exponential functions depending on noncommuting operatorsÂ and B̂, respectively, as
the exponential of a third operator,̂C,

exp[Â] exp[B̂] = exp[̂C]. (1)

The names of Baker, Campbell, and Hausdorff (BCH) are associated [21] with a formula
for the operator̂C expressed in multiple commutators of̂A and B̂:

Ĉ = Â+ B̂ + 1
2[Â, B̂] + 1

12([Â, [Â, B̂]] + [[ Â, B̂], B̂])+ . . . . (2)

Remarkably, the operator̂C depends on commutators of̂A and B̂ only implying that it is
contained in the same algebra aŝA and B̂. For this result to hold it is crucial to consider
products ofexponentialfunctions.

Although the expansion (2) for the operator̂C is explicit, usually the infinite series
of repeated commutators cannot be summed in closed form. It may be used, however, to
generate an approximate expression forĈ by directly calculating a finite number of terms
[8]. When read from left to right, equation (1) shows how toentangle the two factors
into a single exponential. An application important in quantum mechanics results for the
Heisenberg group of position and momentum operatorsq̂ and p̂, where

exp[−ip̂] exp[−iq̂] = exp[−i(p̂ + q̂)+ ih̄/2]. (3)

The right-hand side is particularly simple because the commutator

[p̂, q̂] = h̄
i

(4)

is a constant such that only the first commutator in (2) contributes to the operatorĈ. Another
situation with the need for entangling two operators is encountered in periodically driven
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systems. In specific cases, the propagator over one full period reduces to a product of the
propagators for shorter intervals [4, 7, 19]. The Lie algebras involved in these ‘quantum
maps’ may either have a finite or an infinite number of elements.

When read in the opposite sense, equation (1) represents adisentanglingrelation, that
is, the decomposition of a single exponential into factors with simple properties. Such a
relation is useful to calculate expectation values of basic operators in the groupSU(2), for
example, since they are easily derived from a generating function in disentangled form [1].
Similarly, changes of the group parametrization [9] are conveniently performed by using
BCH relations. In general, the discussion of coherent states for particle and spin systems
as well as for arbitrary Lie groups [16] benefits from the knowledge of (de-)composition
rules (1).

A closely related question arises from the need to perform similarity transformations
according to

exp[−Â]B̂ exp[Â] = B̂ ′. (5)

If the operator̂A is proportional to i times the Hamiltonian of a quantum system, equation (5)
describes the time evolution of the Heisenberg observableB̂ into B̂ ′.

A number of techniques has been established in order to efficiently treat entangling
and disentangling problems, in particular, if the operators involved in the BCH relation are
elements of afinite-dimensional Lie algebra. Two-dimensional unitary faithful irreducible
representations are used to derive explicit results for the groupSU(2) [9], and for the group
of the harmonic oscillator [15, 10], for example. Applications to more complicated cases
involving symplectic groups also have been worked out in detail [20, 11]. However, it is
not necessary to exclusively work with unitary representations: any faithful representation
can be used [10]. This is helpful if one knows a representation consisting of upper and
lower triangular matrices since they are easily exponentiated. Disentanglement of Lie
group elements is also achieved by using recursion relations for expanded exponentials
and Laplace-transform techniques [18]. This approach generalizes a method first applied to
particular group elements ofSU(3) [17]. The powerful approach in [21] maps the problem
of both (dis-)entangling (1) and similarity transformations (5) to the solution of a set of
coupled first-order differential equations. This paper also contains theoretical background
on BCH relations, applications in physics as well as a large number of references.

In this paper a different method to evaluate BCH relations is developped for the groups
SU(N). It is based on the spectral theorem for Hermitian operators in finite-dimensional
vector spaces. A ‘linearized’ version of this theorem is derived by exploiting a specific
feature of the algebrasu(N) the fundamental of representation going beyond its Lie algebraic
properties. In this way, a one-to-one correspondence between an exponential of linearly
combined generators and a linear combination of them is established—thus ‘removing’ the
exponential function. It is then straightforward to entangle elements of the groupSU(N).
Conceptually, this method is related to work performed in the early 1970s where the study
of chiral algebras required the evaluation offinite transformations for special unitary groups
[2, 3]. In that context, however, BCH relations have not been considered.

2. Some fundamentals ofSU(N)

An irreducible faithful representation of the groupSU(N) [14] is given by the set of all
unitary (N ×N) matricesU with unit determinant,

detU = 1 Unn′ ∈ C n, n′ = 1, . . . , N (6)
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also known as the fundamental or defining representation. Each matrixU can be written in
the form

U = exp[−iL] L† = L (7)

with a traceless Hermitian matrixL. It is conveniently expressed as a linear combination

L = L ·Λ ≡
N2−1∑
j=1

LjΛj Lj ∈ R (8)

with the setΛ forming a basis for traceless Hermitian matrices. The Hermitian generators
Λ†j = Λj are a basis of the Liealgebra su(N) of SU(N), satisfying the commutation
relations:

[Λj ,Λk]− = 2ifjklΛl (9)

where the indicesj, k, l, take values from 1 toN2 − 1, the summation convention for
repeated indices applies, and the(N × N) unit matrix is denoted byIN . The structure
constantsfjkl are elements of a completely antisymmetric tensor (spelled out explicitly in
[12] for example) with Jacobi identity

fklmfmpq + fplmfmkq + fkpmfmlq = 0. (10)

The groupSU(N) has rank(N − 1). In other words, any maximal Abelian subalgebra
of su(N) consists of(N − 1) elements corresponding to all linearly independent traceless
N -dimensional diagonal matrices. A ‘complete set of commuting variables’ for a quantum
system described bySU(N) would contain in addition the same number of Casimir operators
according to Racah’s theorem [12]. The properties given so far are valid for all faithful
representations.

A particular feature of the generators in the defining representation of the algebrasu(N)

is closure underanticommutation:

[Λj ,Λk]+ = 4

N
δjkIN + 2djklΛl (11)

where thedjkl form a totally symmetric tensor [12]. ForN = 2, all numbersdjkl are equal
to zero, and the generatorsΛ coincide with the Pauli matricesσ: the anticommutator of
two of them is either equal to zero or a multiple of the unit matrix,I2.

The anticommutation relation is crucial for the following, however, it is neither valid for
representations other than the fundamental one nor for other Lie algebras. As a consequence
of (11), two generatorsΛj andΛk of su(N) are ‘orthogonal’ to each other with respect to
the trace:

Tr(ΛjΛk) = 2δjk. (12)

In addition, a second Jacobi-type identity exists involving both the antisymmetric and the
symmetric structure coefficients in (9) and (11):

fklmdmpq + fkqmdmpl + fkpmdmlq = 0. (13)

For the following, a vector-type notation is useful, based on the structure constants and
the Kronecker symbol. Define the scalar product as already employed in equation (8),

A ·B = AnδnmBm = AnBn (14)

where the components ofA andB are allowed to be either numbers or generatorsΛn.
Similarly, define an antisymmetric ‘cross product’⊗ by

(A⊗B)j = fjklAkBl = −(B ⊗A)j (15)
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and a symmetric ‘dot product’�:

(A�B)j = djklAkBl = +(B �A)j . (16)

Then, the relations (9) and (11) can be written

[A ·Λ,B ·Λ]− = 2i(A⊗B) ·Λ (17)

[A ·Λ,B ·Λ]+ = 4

N
A ·BIN + 2(A�B) ·Λ (18)

whereA andB arearbitrary vectors of dimension(N2−1) with numeric entries. Adding
these equations leads to a compact form of the (anti-) commutation relations:

(A ·Λ)(B ·Λ) = 2

N
A ·B IN + (A�B + iA⊗B) ·Λ. (19)

This equation emphasizes the important point that any expressionquadratic in the generators
can be expressed as alinear combination of them, including the identity. As a matter of
fact, it generalizes the known identity inSU(2) for the Pauli matrices:

(A · σ)(B · σ) = A ·B IN + iA⊗B · σ. (20)

In the new notation, the identities (10), (13) read

(A⊗B) · (C ⊗D)+ (C ⊗B) · (A⊗D)+ (A⊗C) · (B ⊗D) = 0 (21)

(A⊗B) · (C �D)+ (A⊗D) · (C �B)+ (A⊗C) · (B �D) = 0. (22)

Another useful form of equation (13) is given by

A⊗ (B �C) = (A⊗B)�C +B � (A⊗C) (23)

showing that applyingA⊗ to a� product acts as does a derivative. The ‘orthogonality’ of
the generators (12) becomes

Tr((A ·Λ)(B ·Λ)) = 2A ·B (24)

for arbitraryA and B.

3. Spectral theorem

Every matrixM ∈ CN satisfies its own characteristic equation,
N∑
n=0

anMn = 0 aN = 1, a0 = detM (25)

according to the theorem of Cayley–Hamilton. The coefficientsan define the characteristic
polynomial of M. For traceless matrices such asM ∈ su(N), the coefficientaN−1 in
equation (25) is equal to zero since it equals the trace ofM. According to equation (25),
any powerN ′ > N of the matrixM is identical to a linear combination of its powersMn

with 06 n 6 N − 1. The expansion of a matrix exponential can thus be written

exp[−iM] =
∞∑
m=0

(−iM)m

m!
=

N−1∑
n=0

en(M)Mn (26)

with uniquely defined coefficientsen(M). They are determined directly by referring to
the spectral theorem[13] valid for smooth functionsf of a Hermitian matrixM with
(nondegenerate) eigenvaluesmk, k = 1, . . . , N :

f (M) =
N∑
k=1

f (mk)Pk (27)
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and the operatorPk = |mk〉〈mk| projects down to the one-dimensional eigenspace spanned
by the eigenvector|mk〉 associated with the eigenvaluemk. In terms of powersMk and the
eigenvaluesmk, the matricesPk read

Pk =
∏
n6=k

M−mn
mk −mn =

N−1∑
n=0

PknMn (28)

the sum contains powersMN−1 at most since the product runs over(N − 1) factors.
Combining equations (27) and (28), one obtains

f (M) =
N−1∑
n=0

( N∑
k=1

Pknf (mk)

)
Mn ≡

N−1∑
n=0

fnMn (29)

and, upon choosingf (x) ≡ exp[−ix], the sum in the round brackets produces the
coefficientsen of the expansion (26) in terms of the eigenvaluesmk.

It is possible to express the numbersfn in (29) differently [18]. Write the coefficient
fN−1(M, λ) of MN−1 with a dummy parameterλ introduced as follows

fN−1(M, λ) =
N∑
n=1

1nf (λmk) 1n =
∏
k 6=n
(mn −mk)−1. (30)

Linear combinations of derivatives with respect toλ yield the remaining coefficientsfn,
n = 0, 1, . . . , N − 2, associated with any smooth functionf :

fn(M) =
[(
∂N−n−1
λ −

N−n−1∑
ν=1

aN−ν∂N−n−1−ν
λ

)
fN−1(M, λ)

]
λ=1

(31)

with numbersan from the characteristic polynomial (25), and the abbreviaton d/dλ ≡ ∂λ.
Since equation (29) requires the eigenvalues of M, analytic expressions will be obtained
only for (4× 4) matrices at most, i.e. forSU(4).

4. Linearized spectral theorem

A stronger version of relation (27) is now derived. It is valid for Hermitian(N × N)
matrices, and it will be called thelinearized spectral theorem:

f (M ·Λ) = f0(M ) IN + f(M ) ·Λ. (32)

It states that any functionf of a linear combination of the generatorsΛ of SU(N) is equal to
a linear combination of the identity and the generators with well-defined coefficients(f0,f).
In other words, the powers of the generatorsΛ contained in the powersMn ≡ (M ·Λ)n in
equation (29) can be reduced to linear combinations of them. In view of the commutation
relations of the algebrasu(N), equation (19), this is not surprising: the required reduction is
carried out in a finite number of steps by repeatedly expressing products of two generators
by a linear combination of generators.

A convenient procedure to determine(f0,f) in (32) starts from writing

Mn = µ0,nIN + µn ·Λ n = 0, 1, 2, . . . , N − 1 (33)

where

µ0,0 = 1 µ0,1 = 0 (34)

µ0 = 0 µ1 =M . (35)
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A recursion relation for(µ0,n,µn) follows from writing Mn+1 = MnM, using (19) and (33),

Mn+1 = µ0,nM ·Λ+ (µn ·Λ)(M ·Λ)
= 2

N
µn ·M IN + (µ0,nM + µn �M + iµn ⊗M ) ·Λ. (36)

Comparison with (33) for(n+ 1) instead ofn shows that

µ0,n+1 = 2

N
µn ·M (37)

µn+1 = µ0,nM + µn �M + iµn ⊗M =
2

N
(µn−1 ·M )M + µn �M (38)

which recursively defines(µ0,n,µn) in terms of M, starting with the ‘initial values’ (34)
and (35). The terms iµn ⊗M do not contribute since eachµn following from (33) is
proportional toM ,M �M , (M �M )�M , . . .. Using the derivative-like property (23),
one always encounters termsM ⊗M being equal to zero. Consequently, the coefficients
(f0,f) on the right-hand side of (32) have been expressed explicitly throughM and the
eigenvaluesmk:

f0(M ) =
N−1∑
n=0

fnµ0,n f(M ) =
N−1∑
n=0

fnµn (39)

with fn from equations (30) and (31). Note that according to (38) the expression forf(M )

contains only totally symmetric powersM ,M �M , (M �M )�M , . . .. GivenM , a
simple expression forf0 is provided by taking the trace of equation (32):

f0(M ) = 1

N
Tr(f (M ·Λ)) = 1

N

N∑
k=1

f (mk). (40)

It should be pointed out thatf0 is not independent off : one can solve the recursion for
µn, equation (38) without referring to (37). This is reasonable because only then are there
the samenumber of parameters inM and on the right-hand side of (32).

Suppose now that theright-hand sideof equation (32) is given, i.e. the parameters
(f0,f) are known to define a group element ofSU(N). How does one expressM in
terms off? This is actually the difficult step when deriving a BCH formula: to find the
group element in terms of the the original parametrization. Assume the functionf to be
invertible, then one can write

M ·Λ = f −1(f0IN + f ·Λ) = F(f ·Λ) (41)

with a new functionF . The clue to the inversion is to realize that (41) represents an equation
of the type (32) again. This follows from reading equation (32) from right to left, replacing
f → F , exchanging the role off andM , and settingf0 equal to zero in (32). Now
the reasoning leading to equation (39) can be repeated in order to determineM =M (f).
Therefore,M can be found as a function off by the means already established.

The orthonormality (12) for the generatorsΛ allows us to formally switch fromM to
f and vice versain a simple manner: multiply equation (32) withΛk and take the trace
which leads to

fk = Tr(f0Λk + f ·ΛΛk) = Tr(f (M ·Λ)Λk) (42)

while the inverse transformation follows from (41):

Mk = Tr((M ·Λ)Λk) = Tr(f −1(f0IN + f ·Λ)Λk). (43)
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Before applying the linearized spectral theorem to the derivation of BCH formulae, a
comment on the relation between the matricesM =M ·Λ andF in (32),

f (M) = f0IN + F (44)

should be made. We must have [M,F] = 0 since equation (44) is an identity. Nevertheless,
the matrices involved do not have to be multiples of each other. The vanishing commutator
implies that the matricesM and F can be diagonalized simultaneously. Having done this
M would be given by a specific linear combination of(n− 1) traceless diagonal generators
Hk, k = 1, 2, . . . , N − 1. The matrixF commutes withM and it is therefore only required
to be another element of the maximal Abelian subalgebra containingM. For the group
SU(2), the dimension of this algebra is equal to one:M and F are in this (and only this)
case proportional to each other (cf the first example below). ForSU(3) this observation is
illustrated by a result of [6] where Lie groups are studied from a geometric point of view.
In an appropriate local basis, any group element can be written as a function of a linear
combination of two commuting operators which span a maximal Abelian subalgebra.

5. BCH for SU (N )

A BCH relation for composing a group of elements ofSU(N) follows from twofold
application of the linearized spectral theorem withf (x) = exp[−ix]. Consider the product
of two finite transformations, exp[−iM ·Λ] and exp[−iN ·Λ], which defines a third element
of SU(N) characterized byR,

exp[−iR ·Λ] = exp[−iM ·Λ] exp[−iN ·Λ]. (45)

Using equation (32) with the exponential function, we obtain

exp[−iR ·Λ] = µ0ν0IN + (ν0µ+ µ0ν) ·Λ+ (µ ·Λ)(ν ·Λ)
= (µ0ν0+ 2

N
µ · ν)IN + (ν0µ+ µ0ν + µ� ν + iµ⊗ ν) ·Λ

= ρ0IN + ρ ·Λ (46)

using the commutation relations (19). The quantities(ρ0,ρ) can be read off directly as
the coefficients ofIN and Λj , respectively. The components ofR are thus given by
equation (43):

Rk = i Tr

{
ln

[(
µ0ν0+ 2

N
µ · ν

)
IN + (ν0µ+ µ0ν + µ� ν + iµ⊗ ν) ·Λ

]
Λk

}
(47)

providing the relationR = R(M ,N ). The explicit evaluation requires diagonalization of
the matricesM an N in order to determineµ andν; finally, ρ ·Λ has to be diagonalized in
order to evaluate the logarithm in equation (47). In total, three(N×N) matrices have to be
diagonalized to achieve the entangling. Derivation of (47) makes use of the anticommutation
relations which are peculiar to the defining representation. Nevertheless the result is valid
for all representations since the operatorĈ in (2) is a uniquely defined linear combination
of the generators. If it has been determined in one faithful representation it is known in all
others.

As an illustration, the familiar example ofSU(2) will be looked at from the point of
view developed here. However, the� product being identical to zero, this case does not
exhibit the full complexity. Therefore,SU(4) will also be discussed briefly. Before giving
the examples, the use of the linearized spectral theorem for the determination of similarity
transformations in the groupSU(N) will be indicated.



8746 S Weigert

6. Similarity transformations

The transformation of the operatorN = N · Λ ∈ su(N) under M = M · Λ ∈ su(N)
according to

exp[−iM]N exp[iM] = N′ (48)

could be determined from the linearized spectral theorem in the following way. Write the
group element as

exp[iM] = µ0IN + µ ·Λ (49)

and its inverse follows from the adjoint of this equation as

exp[−iM] = µ0
∗IN + µ∗ ·Λ (50)

where the star denotes complex conjugation. Plugging these expressions into (48), one
encounters triple products of generatorsΛ which when reduced to a linear combination lead
to a somewhat involved expression. It is more convenient to first multiply equation (48)
with exp[iM], and to work out the termsquadratic in the generators. Comparison of the
coefficients ofIN andΛ leads to

µ · ν = µ ·N ′ (51)

µ0N +N � µ+ iN ⊗ µ = µ0N
′ + µ�N ′ + iµ⊗N ′. (52)

It is the vectorN ′ which must be determined from these equations. It is useful to rewrite
equation (52) with matrices

K± ≡ µ0IN + µ�±iµ⊗ (53)

acting on the vectorsN andN ′, respectively,

K−N = K+N ′. (54)

The matrixK+ doeshave an inverse,K−1
+ , since it describes the action of exp[iM] on N′

which is invertible. Consequently, the vector N’ is determined by the relation

N ′ = K−1
+ K−ν

= (µ0IN + µ�+iµ⊗)−1(µ0IN + µ�−iµ⊗)N (55)

as a function ofµ andN as required.

7. Example 1: SU (2)

The groupSU(2) is used to describe rotations in quantum mechanics and it is isomorphic
[5, 9] to the group of unimodular quaternions,Sl(1, q). The multiplication rules of
quaternions being known, explicit expressions for the product of two elements of the group
SU(2) are obtained easily. In quantum mechanics, as a first step one usually establishes
the relation

exp[−iα · σ/2] = cos(α/2)I2− i sin(α/2)eα · σ α = αeα eα · eα = 1 (56)

by expansion (26) of the exponential exploiting the simple properties of the(2× 2) Pauli
matrices. The three-vectorα determines both the axis of rotation,eα, and the turning angle,
0 6 α 6 4π . Equation (56) is special since the matrix in the exponent and the second
term on the right are proportional to each other. As was mentioned before this is due to
the fact that the groupSU(2) has rank one, implying that all traceless(2× 2) matrices are
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multiples of each other. Calculating the product of two rotations characterized byα andβ,
respectively, one obtains

exp[−iγ · σ/2] = (cos(α/2) cos(β/2)+α · β)I2− i(sin(α/2) cos(β/2)eα
+ cos(α/2) sin(β/2)eβ + sin(α/2) sin(β/2)eα ∧ eβ) · σ. (57)

The vectorγ which points along the axis of the composed rotation can be read off directly.
Equations (56) and (57) are derived easily from the spectral method. First, write down

the quantities introduced in the derivation of equation (39). The spectral theorem (32)
involves the projection operatorsP± (with (±) ≡ (1, 2)) which for SU(2) are found from
(28) to be

P± = α · σ − α∓
α± − α∓ =

1

2
(I2± eα · σ) (58)

using the fact that the operatorα·σ has eigenvaluesα± = ±α. This immediately reproduces
equation (56) via

e−iα+P+ + e−iα−P− = exp[−iα · σ/2]. (59)

Writing down the right-hand side of equation (46) for the parameters(µ0 = cos(α/2),µ =
− sin(α/2)eα) and similarly for(ν0,ν), one finds that (keep� ≡ 0 in mind)

γ0 = cos(α/2) cos(β/2)+ sin(α/2) sin(β/2)eα · eβ (60)

γ = (sin(α/2) cos(β/2)eα + cos(α/2) sin(β/2)eβ + sin(α/2) sin(β/2)eα ⊗ eβ) · σ. (61)

This reproduces equation (57) because⊗ coincides with the familiar cross product in three
dimensions. Note that the results have been derived here without explicitly expanding the
exponentials involved.

8. Example 2: SU (4)

The example ofSU(2) is exceptional in the sense that (i) the product� is identically zero,
(ii) the spectral theorem and its linearized version coincide, and (iii) the matricesM andF in
equation (44) are multiples of each other. None of these properties holds forSU(N),N > 3,
all of which do providegenericexamples to illustrate the BCH-composition rule. Analytic
solvability of the third- and fourth-order characteristic polynomials is a pleasant accident but
it does not have any structural consequences in this context. To give a nontrivial example,
SU(4) will be studied below.

The interesting point is the reduction of the spectral theorem for an element ofSU(4) to
linear form. Let us assume that the coefficientsen(M ) of the powers ofM in equation (26)
have been determined (usef (x) ≡ exp[−ix]) by solving the characteristic polynomial of
M and by employing equations (30) and (31):

exp[−iM] = e0I4+ e1M ·Λ+ e2(M ·Λ)2+ e3(M ·Λ)3

= (e1+ e2
1
2M

2+ e3
1
2(M �M ) ·M )I4+ ((e1+ e3

1
2M

2)M

+e2M �M + e3(M �M )�M ) ·Λ (62)

and that the reduction has been carried out via equation (19), using the antisymmetry of the
⊗ product. Alternatively, one employs formula (39) based on the recursion relations. The
quadratic and cubic terms lead to vectors with third powers ofM at most. As an identity
the left- and right-hand side of (62) must commute which is not trivial only for the last two
terms multiplyingΛ:

[M ·Λ, (M �M ) ·Λ] = 2i{M ⊗ (M �M )} ·Λ = 0 (63)
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as follows from (22) applied to the quantity in curly brackets. Similarly, for the fourth term
one finds

[M ·Λ, {(M �M )�M } ·Λ] = 2i(M ⊗ {(M �M )�M }) ·Λ = 0. (64)

Furthermore, one shows along the same line that these two terms commute among
themselves,

[(M �M ) ·Λ, {(M �M )�M } ·Λ] = 2i((M �M )⊗ {(M �M )�M }) ·Λ = 0.

(65)

Hence, in the process of ‘linearization’,threecommuting linear combinations of the(N2−1)
matricesΛ arise naturally forSU(4). They span the maximal Abelian subalgebra associated
with the elementM · Λ. Knowing (62) it is straightforward to (i) multiply two elements
exp[−iM] and exp[−iN] of SU(4); (ii) reduce the product to linear form by removing
the single term quadratic inΛ in analogy to (46) and (iii) to re-exponentiate using the
prescription in (47).

9. Summary and discussion

It has been shown how to explicitly calculate BCH relations for the groupSU(N). The
essential ingredients are: (i) the property that products of generatorsΛj ∈ SU(N) are
expressible as linear combinations of generators, and (ii) the reduction of the spectral
theorem to linearized form. It has been assumed throughout that the operators involved
have no degenerate eigenvalues (this case could be included along the lines shown in [18],
for example). Applications of these results are expected to deal with coherent states for the
groupSU(N), useful for the description of lasers withN levels.

Both steps, (i) and (ii), are based on a surplus of structure in the fundamental
representation of the algebrasu(N), i.e. the specific form of the anticommutator (11).
Therefore, the generalization of this approach to other groups is possible whenever there
is a representation such that theproduct of two generators defines another element of the
original algebra. In general, this is guaranteed only for theLie product, the commutator,
but not for the anticommutator. To put it differently, one must have a representation of the
Lie algebra which is closed under both commutationand anticommutation of its elements.
Apart from SU(N), this property also holds for the general linear group inN dimensions,
GL(N), for example.

Acknowledgment

This work was supported by the Swiss National Science Foundation.

References

[1] Arecchi F T, Courtens E, Gilmore R and Thomas H 1972Phys. Rev.A 6 2211
[2] Barnes K J, Dondi P H and Sarkar S C 1972J. Phys. A: Math. Gen.5 555
[3] Barnes K J and Delbourgo R 1972J. Phys. A: Math. Gen.5 1043
[4] Berry M V, Balazs N L, Tabor M and Voros A 1979 Ann Phys.122 26
[5] Biedenharn L C and Louck J 1981Angular Momentum in Quantum Physics(London: Addison Wesley)
[6] Bulgac A and Kusnezow D 1990Ann. Phys.199 187
[7] Casati G, Chirikov D V, Ford J and Izraelev F M 1979 Stochastic Behaviour in Classical and Quantum

Systems (Lecture Notes in Physics 93)ed G Casati and J Ford (Berlin: Springer)
[8] Erikson E 1968J. Math. Phys.8 790



Baker–Campbell–Hausdorff relation forSU(N) 8749

[9] Gilmore R 1974Lie Groups, Lie Algebras and Some of Their Applications(New York: Wiley)
[10] Gilmore R 1974J. Math. Phys.15 2090
[11] Gilmore R and Yuan B 1989J. Chem. Phys.91 917
[12] Greiner W and M̈uller B 1990Quantenmechanik Teil 2: Symmetrien(Thun: Harri Deutsch)
[13] Halmos P R 1958Finite Dimensional Vector Spaces(New York: van Nostrand)
[14] Itzykson C and Nauenberg M 1966Rev. Mod. Phys.38 95
[15] Miller W Jr 1972Symmetry Groups and their Applications(New York: Academic)
[16] Perelomov A 1986Generalized Coherent States and their Applications(Berlin: Springer)
[17] Rhagunathan K, Seetharaman M and Vasan S S 1989J. Phys. A: Math. Gen.22 L1089
[18] Rhagunathan K, Seetharaman M, Vasan S S and Mary Agnes J 1992J. Phys. A: Math. Gen.25 1527
[19] Schatzer L and Weigert St 1998Phys. Rev.A to be published
[20] Twamley J 1993Phys. Rev.A 48 2627
[21] Wilcox R M 1967J. Math. Phys.8 962


